Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Topics in Antiviral Medicine ; 31(2):92, 2023.
Article in English | EMBASE | ID: covidwho-2319256

ABSTRACT

Background: BST2/Tetherin is an interferon-stimulated gene with antiviral activity against enveloped viruses. Particularly, BST2 tethers virions at their site of assembly, preventing their release and spread. In addition to this primary role, BST2 is as an important bridge between the innate and adaptive immune system, since (i) BST2 routes tethered particles to lysosomes, which generates viral breakdown products that engage pattern recognition receptors;and (ii) trapped virions facilitate antibody-dependent cell-mediated cytotoxicity (ADCC). In turn, viruses have evolved mechanisms to bypass BST2, either by targeting BST2 for proteasomal/lysosomal degradation or by removing BST2 from sites of virion assembly. However, the role of BST2 in SARS-CoV-2 replication, spread, evolution, and pathogenesis remains largely unknown. Method(s): The antiviral potential of BST2 against SARS-CoV-2 was investigated by infecting different SARS-CoV-2 isolates (Hong Kong, Alpha, Beta, Delta, and Omicron) in BST2+ and BST2- cells. Culture supernatants were collected to assess virion production by ELISA and infectivity by TCID50. Infected cells were analyzed by western blot and flow cytometry to examine viral and cellular protein levels, including BST2. Transfection of individual SARS-CoV-2 ORFs and mutagenesis studies allowed us to identify the genes that the virus uses to downregulate BST2. Immunoprecipitation assays revealed protein-protein interactions and changes in ubiquitination patterns. Experiments with proteasomal and lysosomal inhibitors furthered our mechanistic understanding of how SARS-CoV-2 counteracts BST2. Finally, fluorescence microscopy studies uncovered changes in the subcellular distribution of BST2 in SARS-CoV-2 infected cells. Result(s): While BST2 reduces virion release, SARS-CoV-2 has evolved to counteract this effect. Specifically, SARS-CoV-2 uses the Spike to interact with BST2, sequester the protein at perinuclear locations, and ultimately route it for lysosomal degradation. By surveying different SARS-CoV-2 variants of concern (Alpha-Omicron), we found that each variant is more efficient than the previously circulating strain at downregulating BST2 and facilitating virion production, and that mutations in the Spike account for their enhanced BST2 antagonism. Conclusion(s): As part of its adaptation to humans, SARS-CoV-2 is improving its capacity to counteract BST2, highlighting that BST2 antagonism is important for SARS-CoV-2 infectivity and transmission.

2.
J Virol ; 97(5): e0037523, 2023 05 31.
Article in English | MEDLINE | ID: covidwho-2316566

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that has the potential to infect humans. Histone deacetylase 6 (HDAC6) is a unique type IIb cytoplasmic deacetylase with both deacetylase activity and ubiquitin E3 ligase activity, which mediates a variety of cellular processes by deacetylating histone and nonhistone substrates. In this study, we found that ectopic expression of HDAC6 significantly inhibited PDCoV replication, while the reverse effects could be observed after treatment with an HDAC6-specific inhibitor (tubacin) or knockdown of HDAC6 expression by specific small interfering RNA. Furthermore, we demonstrated that HDAC6 interacted with viral nonstructural protein 8 (nsp8) in the context of PDCoV infection, resulting in its proteasomal degradation, which was dependent on the deacetylation activity of HDAC6. We further identified the key amino acid residues lysine 46 (K46) and K58 of nsp8 as acetylation and ubiquitination sites, respectively, which were required for HDAC6-mediated degradation. Through a PDCoV reverse genetics system, we confirmed that recombinant PDCoV with a mutation at either K46 or K58 exhibited resistance to the antiviral activity of HDAC6, thereby exhibiting higher replication compared with wild-type PDCoV. Collectively, these findings contribute to a better understanding of the function of HDAC6 in regulating PDCoV infection and provide new strategies for the development of anti-PDCoV drugs. IMPORTANCE As an emerging enteropathogenic coronavirus with zoonotic potential, porcine deltacoronavirus (PDCoV) has sparked tremendous attention. Histone deacetylase 6 (HDAC6) is a critical deacetylase with both deacetylase activity and ubiquitin E3 ligase activity and is extensively involved in many important physiological processes. However, little is known about the role of HDAC6 in the infection and pathogenesis of coronaviruses. Our present study demonstrates that HDAC6 targets PDCoV-encoded nonstructural protein 8 (nsp8) for proteasomal degradation through the deacetylation at the lysine 46 (K46) and the ubiquitination at K58, suppressing viral replication. Recombinant PDCoV with a mutation at K46 and/or K58 of nsp8 displayed resistance to the antiviral activity of HDAC6. Our work provides significant insights into the role of HDAC6 in regulating PDCoV infection, opening avenues for the development of novel anti-PDCoV drugs.


Subject(s)
Coronavirus Infections , Coronavirus , Swine Diseases , Animals , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Coronavirus/metabolism , Histone Deacetylase 6/genetics , Histone Deacetylase 6/metabolism , Lysine/metabolism , Swine , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Virus Replication
3.
Frontiers in Anti-infective Drug Discovery ; 9:25-122, 2021.
Article in English | EMBASE | ID: covidwho-2291208

ABSTRACT

Post-translational modifications are changes introduced to proteins after their translation. They are the means to generate molecular diversity, expand protein function, control catalytic activity and trigger quick responses to a wide range of stimuli. Moreover, they regulate numerous biological processes, including pathogen invasion and host defence mechanisms. It is well established that bacteria and viruses utilize post-translational modifications on their own or their host's proteins to advance their pathogenicity. Doing so, they evade immune responses, target signaling pathways and manipulate host cytoskeleton to achieve survival, replication and propagation. Many bacterial species secrete virulence factors into the host and mediate hostpathogen interactions by inducing post-translational modifications that subvert fundamental cellular processes. Viral pathogens also utilize post translational modifications in order to overcome the host defence mechanisms and hijack its cellular machinery for their replication and propagation. For example, many coronavirus proteins are modified to achieve host invasion, evasion of immune responses and utilization of the host translational machinery. PTMs are also considered potential targets for the development of novel therapeutics from natural products with antibiotic properties, like lasso peptides and lantibiotics. The last decade, significant progress was made in understanding the mechanisms that govern PTMs and mediate regulation of protein structure and function. This urges the identification of relevant molecular targets, the design of specific drugs and the discovery of PTM-based medicine. Therefore, PTMs emerge as a highly promising field for the investigation and discovery of new therapeutics for many infectious diseases.Copyright © 2021 Bentham Science Publishers.

4.
J Med Virol ; 95(4): e28719, 2023 04.
Article in English | MEDLINE | ID: covidwho-2299549

ABSTRACT

The innate immune response is the first line of host defense against viral infections, but its role in immunity against SARS-CoV-2 remains unclear. By using immunoprecipitation coupled with mass spectroscopy, we observed that the E3 ubiquitin ligase TRIM21 interacted with the SARS-CoV-2 nucleocapsid (N) protein and ubiquitinated it at Lys375 . Upon determining the topology of the TRIM21-mediated polyubiquitination chain on N protein, we then found that polyubiquitination led to tagging of the N protein for degradation by the host cell proteasome. Furthermore, TRIM21 also ubiquitinated the N proteins of SARS-CoV-2 variants of concern, including Alpha, Beta, Gamma, Delta, and Omicron together with SARS-CoV and MERS-CoV variants. Herein, we propose that ubiquitylation and degradation of the SARS-CoV-2 N protein inhibited SARS-CoV-2 viral particle assembly, by which it probably involved in preventing cytokine storm. Eventually, our study has fully revealed the association between the host innate immune system and SARS-CoV-2 N protein, which may aid in developing novel SARS-CoV-2 treatment strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immunity, Innate , SARS-CoV-2/metabolism , Ubiquitin/metabolism , Ubiquitination , Coronavirus Nucleocapsid Proteins/metabolism
5.
Phytomedicine ; 114: 154753, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2302077

ABSTRACT

BACKGROUND: Dehydroandrographolide (Deh) from Andrographis paniculata (Burm.f.) Wall has strong anti-inflammatory and antioxidant activities. PURPOSE: To explore the role of Deh in acute lung injury (ALI) of coronavirus disease 19 (COVID-19) and its inflammatory molecular mechanism. METHODS: Liposaccharide (LPS) was injected into a C57BL/6 mouse model of ALI, and LPS + adenosine triphosphate (ATP) was used to stimulate BMDMs in an in vitro model of ALI. RESULTS: In an in vivo and in vitro model of ALI, Deh considerably reduced inflammation and oxidative stress by inhibiting NLRP3-mediated pyroptosis and attenuated mitochondrial damage to suppress NLRP3-mediated pyroptosis through the suppression of ROS production by inhibiting the Akt/Nrf2 pathway. Deh inhibited the interaction between Akt at T308 and PDPK1 at S549 to promote Akt protein phosphorylation. Deh directly targeted PDPK1 protein and accelerated PDPK1 ubiquitination. 91-GLY, 111-LYS, 126-TYR, 162-ALA, 205-ASP and 223-ASP may be the reason for the interaction between PDPK1 and Deh. CONCLUSION: Deh from Andrographis paniculata (Burm.f.) Wall presented NLRP3-mediated pyroptosis in a model of ALI through ROS-induced mitochondrial damage through inhibition of the Akt/Nrf2 pathway by PDPK1 ubiquitination. Therefore, it can be concluded that Deh may be a potential therapeutic drug for the treatment of ALI in COVID-19 or other respiratory diseases.


Subject(s)
Acute Lung Injury , COVID-19 , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Andrographis paniculata , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Medicine, Chinese Traditional , Pyroptosis , Lipopolysaccharides/pharmacology , NF-E2-Related Factor 2 , Mice, Inbred C57BL , Acute Lung Injury/chemically induced , Inflammasomes
6.
Advances in Health and Disease ; 63:1-69, 2023.
Article in English | Scopus | ID: covidwho-2267489

ABSTRACT

All eukaryotic cells have a system in place called the ubiquitin-dependent proteolysis system to control protein degradation;nevertheless, any flaws in this system can initiate numerous fatal diseases, including cancer, metabolic problems, neurological disorders and diseases. These health complications interlink with faults in ubiquitin-dependent proteolysis. Ubiquitin assists as a post-translational targeting signal for altering the structure, localization of other proteins, features and functioning styles of the cells and tissues. The ubiquitin ligase standardizes the specific nature of the ubiquitination features and cellular response. The ubiquitin ligase is a critical element of the enzymatic cascade that regulates the part of the multipubiquitin chain to the target or labile protein. Consequently, the attachment of the ubiquitin topology is crucial for regulating healthy growth, differentiation, and protection of cells from damage by xenobiotics, infections, mutations, and environmental stresses. Protein degradation is adopted by the cells as a route to enduringly deactivate proteins. The 26S proteasome is responsible for ATP-dependent protein failure in the cytoplasm and nuclei of eukaryotes. Most proteins are covalently associated with a multi-ubiquitin chain and engage the 26S proteasome. In the testes, the ubiquitin ligases E1, E2, E3, and UBC4 are dynamic. Here, prompt and large protein alterations are essential for a cell to respond to its environment, and a complex web of interrelated events, including control over synthesis, localization, and degradation. The regulator of the cell cycle, receptor processing, growth management, and stress response are all subject to intracellular proteolysis. This chapter focuses on (I) the significant contribution of ubiquitination in the cellular signaling pathways that contract with these external influences;(II) the mechanisms of ubiquitination-deubiquitination that offer the system its high level of selectivity, (III) the role of ubiquitin-dependent degradation in initiating diseases in humans and forthcoming clinical claims developed to employ the cell's built-in proteolytic machinery to cure diseases;(IV) to examine imaginable clinical practices fashioned to exploit the body's own proteolytic machinery to cure the diseases, and analyze the effectiveness of vaccinations, antibodies, and other possible therapies that aim to block SARS-CoV-2 entrance pathways. Lastly, the authors include the most important unanswered queries pertaining to this crucial route. © 2023 Nova Science Publishers, Inc.

7.
J Med Virol ; 95(3): e28655, 2023 03.
Article in English | MEDLINE | ID: covidwho-2260026

ABSTRACT

As the key component of host innate antiviral immunity, type I interferons (IFN-Is) exert multiple antiviral effects by inducing hundreds of IFN-stimulated genes. However, the precise mechanism involved in host sensing of IFN-I signaling priming is particularly complex and remains incompletely resolved. This research identified F-box protein 11 (FBXO11), a component of the E3-ubiquitin ligase SKP/Cullin/F-box complex, acted as an important regulator of IFN-I signaling priming and antiviral process against several RNA/DNA viruses. FBXO11 functioned as an essential enhancer of IFN-I signaling by promoting the phosphorylation of TBK1 and IRF3. Mechanistically, FBXO11 facilitated the assembly of TRAF3-TBK1-IRF3 complex by mediating the K63 ubiquitination of TRAF3 in a NEDD8-dependent manner to amplify the activation of IFN-I signaling. Consistently, the NEDD8-activating enzyme inhibitor MLN4921 could act as a blocker for FBXO11-TRAF3-IFN-I axis of signaling. More significantly, examination of clinical samples of chronic hepatitis B virus (HBV) infection and public transcriptome database of severe acute respiratory syndrome coronavirus-2-, HBV-, and hepatitis C virus-infected human samples revealed that FBXO11 expression was positively correlated with the stage of disease course. Taken together, these findings suggest that FBXO11 is an amplifier of antiviral immune responses and might serve as a potential therapeutic target for a number of different viral diseases.


Subject(s)
COVID-19 , F-Box Proteins , Hepatitis B, Chronic , Interferon Type I , Humans , Antiviral Agents/pharmacology , Protein Serine-Threonine Kinases/genetics , TNF Receptor-Associated Factor 3/genetics , Immunity, Innate , Interferon Type I/metabolism , Interferon Regulatory Factor-3/genetics , Protein-Arginine N-Methyltransferases/metabolism
8.
Front Oncol ; 13: 1151434, 2023.
Article in English | MEDLINE | ID: covidwho-2268728

ABSTRACT

Purpose: Aimed to identify the anti-uterine corpus endometrial carcinoma (UCEC) function and characterize the mechanism of quercetin in the treatment of patients infected with COVID-19 via integrated in silico analysis. Methods: The Cancer Genome Atlas and Genotype Tissue Expression databases were applied to obtain differentially expressed genes of UCEC and non-tumor tissue. Several in silico methods such as network pharmacology, functional enrichment analysis, Cox regression analyses, somatic mutation analysis, immune infiltration and molecular docking were used to investigate and analysis the biological targets, functions and mechanisms of anti-UCEC/COVID-19 of quercetin. Multiple methods such as CCK8 assay, Transwell assay and western blotting were performed to test proliferation, migration, and protein level of UCEC (HEC-1 and Ishikawa) cells. Results: Functional analysis disclosed that quercetin against UCEC/COVID-19 mainly by 'biological regulation', 'response to stimulus', and 'regulation of cellular process'. Then, regression analyses indicated that 9 prognostic genes (including ANPEP, OAS1, SCGB1A1, HLA-A, NPPB, FGB, CCL2, TLR4, and SERPINE1) might play important roles in quercetin for treating UCEC/COVID-19. Molecular docking analysis revealed that the protein products of 9 prognostic genes were the important anti-UCEC/COVID-19 biological targets of quercetin. Meanwhile, the proliferation and migration of UCEC cells were inhibited by quercetin. Moreover, after treatment with quercetin, the protein level of ubiquitination-related gene ISG15 was decreased in UCEC cells in vitro. Conclusions: Taken together, this study provides new treatment option for UCEC patients infected with COVID-19. Quercetin may work by reducing the expression of ISG15 and participating in ubiquitination-related pathways.

9.
mBio ; : e0316821, 2022 Feb 01.
Article in English | MEDLINE | ID: covidwho-2288112

ABSTRACT

As an enveloped virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains a membrane protein (M) that mediates viral release from cellular membranes. However, the molecular mechanisms of SARS-CoV-2 virion release remain poorly understood. In the present study, we performed RNA interference (RNAi) screening and identified the E3 ligase RNF5, which mediates the ubiquitination of SARS-CoV-2 M at residue K15 to enhance the interaction of the viral envelope protein (E) with M, whereas the deubiquitinating enzyme POH1 negatively regulates this process. The M-E complex ensures the uniform size of viral particles for viral maturation and mediates virion release. Moreover, M traffics from the Golgi apparatus to autophagosomes and uses autophagosomes for virion release, and this process is dependent on RNF5-mediated ubiquitin modification and M-E interaction. These results demonstrate that ubiquitin modification of SARS-CoV-2 M stabilizes the M-E complex and uses autophagosomes for virion release. IMPORTANCE Enveloped virus particles are released from the membranes of host cells, and viral membrane proteins (M) are critical for this process. A better understanding of the molecular mechanisms of SARS-CoV-2 assembly and budding is critical for the development of antiviral therapies. Envelope protein (E) and M of SARS-CoV-2 form complexes to mediate viral assembly and budding. RNF5 was identified to play a role as the E3 ligase, and POH1 was demonstrated to function as the deubiquitinating enzyme of SARS-CoV-2 M. The two components collectively regulate the interaction of M with E to promote viral assembly and budding. Ubiquitinated M uses autophagosomes for viral release. Our findings provide insights into the mechanisms of SARS-CoV-2 assembly and budding, demonstrating the importance of ubiquitination modification and autophagy in viral replication.

10.
Microbiol Spectr ; : e0150922, 2022 Nov 03.
Article in English | MEDLINE | ID: covidwho-2269455

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), which has emerged in the last 2 years. The accessory protein ORF7a has been proposed as an immunomodulating factor that can cause dramatic inflammatory responses, but it is unknown how ORF7a interacts with host cells. We show that ORF7a induces cell apoptosis by recruiting the prosurvival factor BclXL to the endoplasmic reticulum (ER) via the exposed C-terminal residues Lys117 and Lys119. Simultaneously, ORF7a activates ER stress via the PERK-elF2α-CHOP pathway and inhibits the expression of endogenous BclXL, resulting in enhanced cell apoptosis. Ubiquitination of ORF7a interrupts the interaction with BclXL in the ER and weakens the activation of ER stress, which to some extent rescues the cells. Our work demonstrates that SARS-CoV-2 ORF7a hires antiapoptosis protein and aggregates on the ER, resulting in ER stress and apoptosis initiation. On the other hand, ORF7a utilizes the ubiquitin system to impede and escape host elimination, providing a promising potential target for developing strategies for minimizing the COVID-19 pandemic. IMPORTANCE Viruses struggle to reproduce after infecting cells, and the host eliminates infected cells through apoptosis to prevent virus spread. Cells adopt a special ubiquitination code to protect against viral infection, while ORF7a manipulates and exploits the ubiquitin system to eliminate host cells' effect on apoptosis and redirect cellular pathways in favor of virus survival. Our results revealed that SARS-CoV-2-encoded accessory protein ORF7a recruits prosurvival factor BclXL to the ER and activates the cellular ER stress response resulting in the initiation of programmed death to remove virus-infected cells. Ubiquitination of ORF7a blocked the recruitment of BclXL and suppressed the ER stress response, which helps to counteract cell apoptosis and rescue cell fate. These findings help us understand the mechanism of SARS-CoV-2 invasion and contribute to a theoretical foundation for the clinical prevention of COVID-19.

11.
Front Immunol ; 13: 1068449, 2022.
Article in English | MEDLINE | ID: covidwho-2228847

ABSTRACT

SARS-CoV-2 can cause lung diseases, such as pneumonia and acute respiratory distress syndrome, and multi-system dysfunction. Post-translational modifications (PTMs) related to SARS-CoV-2 are conservative and pathogenic, and the common PTMs are glycosylation, phosphorylation, and acylation. The glycosylation of SARS-CoV-2 mainly occurs on spike (S) protein, which mediates the entry of the virus into cells through interaction with angiotensin-converting enzyme 2. SARS-CoV-2 utilizes glycans to cover its epitopes and evade the immune response through glycosylation of S protein. Phosphorylation of SARS-CoV-2 nucleocapsid (N) protein improves its selective binding to viral RNA and promotes viral replication and transcription, thereby increasing the load of the virus in the host. Succinylated N and membrane(M) proteins of SARS-CoV-2 synergistically affect virus particle assembly. N protein regulates its affinity for other proteins and the viral genome through acetylation. The acetylated envelope (E) protein of SARS-CoV-2 interacts with bromodomain-containing protein 2/4 to influence the host immune response. Both palmitoylation and myristoylation sites on S protein can affect the virus infectivity. Papain-like protease is a domain of NSP3 that dysregulates host inflammation by deubiquitination and impinges host IFN-I antiviral immune responses by deISGylation. Ubiquitination of ORF7a inhibits host IFN-α signaling by blocking STAT2 phosphorylation. The methylation of N protein can inhibit the formation of host stress granules and promote the binding of N protein to viral RNA, thereby promoting the production of virus particles. NSP3 macrodomain can reverse the ADP-ribosylation of host proteins, and inhibit the cascade immune response with IFN as the core, thereby promoting the intracellular replication of SARS-CoV-2. On the whole, PTMs have fundamental roles in virus entry, replication, particle assembly, and host immune response. Mutations in various SARS-CoV-2 variants, which lead to changes in PTMs at corresponding sites, cause different biological effects. In this paper, we mainly reviewed the effects of PTMs on SARS-CoV-2 and host cells, whose application is to inform the strategies for inhibiting viral infection and facilitating antiviral treatment and vaccine development for COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19 Vaccines , Protein Processing, Post-Translational , RNA, Viral , Antiviral Agents
12.
J Biomed Sci ; 29(1): 55, 2022 Jul 31.
Article in English | MEDLINE | ID: covidwho-1965824

ABSTRACT

BACKGROUND: Infections by viruses including severe acute respiratory syndrome coronavirus 2 could cause organ inflammations such as myocarditis, pneumonia and encephalitis. Innate immunity to viral nucleic acids mediates antiviral immunity as well as inflammatory organ injury. However, the innate immune mechanisms that control viral induced organ inflammations are unclear. METHODS: To understand the role of the E3 ligase TRIM18 in controlling viral myocarditis and organ inflammation, wild-type and Trim18 knockout mice were infected with coxsackievirus B3 for inducing viral myocarditis, influenza A virus PR8 strain and human adenovirus for inducing viral pneumonia, and herpes simplex virus type I for inducing herpes simplex encephalitis. Mice survivals were monitored, and heart, lung and brain were harvested for histology and immunohistochemistry analysis. Real-time PCR, co-immunoprecipitation, immunoblot, enzyme-linked immunosorbent assay, luciferase assay, flow cytometry, over-expression and knockdown techniques were used to understand the molecular mechanisms of TRIM18 in regulating type I interferon (IFN) production after virus infection in this study. RESULTS: We find that knockdown or deletion of TRIM18 in human or mouse macrophages enhances production of type I IFN in response to double strand (ds) RNA and dsDNA or RNA and DNA virus infection. Importantly, deletion of TRIM18 protects mice from viral myocarditis, viral pneumonia, and herpes simplex encephalitis due to enhanced type I IFN production in vivo. Mechanistically, we show that TRIM18 recruits protein phosphatase 1A (PPM1A) to dephosphorylate TANK binding kinase 1 (TBK1), which inactivates TBK1 to block TBK1 from interacting with its upstream adaptors, mitochondrial antiviral signaling (MAVS) and stimulator of interferon genes (STING), thereby dampening antiviral signaling during viral infections. Moreover, TRIM18 stabilizes PPM1A by inducing K63-linked ubiquitination of PPM1A. CONCLUSIONS: Our results indicate that TRIM18 serves as a negative regulator of viral myocarditis, lung inflammation and brain damage by downregulating innate immune activation induced by both RNA and DNA viruses. Our data reveal that TRIM18 is a critical regulator of innate immunity in viral induced diseases, thereby identifying a potential therapeutic target for treatment.


Subject(s)
Encephalitis, Herpes Simplex , Myocarditis , Ubiquitin-Protein Ligases , Virus Diseases , Animals , Antiviral Agents , Humans , Immunity, Innate , Inflammation/genetics , Mice , Myocarditis/genetics , Myocarditis/virology , Protein Phosphatase 2C , RNA , Ubiquitin-Protein Ligases/genetics
13.
Clin Transl Med ; 12(12): e1103, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2127659

ABSTRACT

BACKGROUND: The crosstalk between the ubiquitin-proteasome and the immune system plays an important role in the health and pathogenesis of viral infection. However, there have been few studies of ubiquitin activation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: We investigated the effect of ubiquitination on SARS-CoV-2 infection and patient prognosis by integrating published coronavirus disease 2019 (COVID-19) multi-transcriptome data and bioinformatics methods. RESULTS: The differential expression of COVID-19 samples revealed changed ubiquitination in most solid and hollow organs, and it was activated in lymphatic and other immune tissues. In addition, in the respiratory system of COVID-19 patients, the immune response was mainly focused on the alveoli, and the expression of ubiquitination reflected increasing immune infiltration. Ubiquitination stratification could significantly differentiate patients' prognosis and inflammation levels through the general transcriptional analysis of the peripheral blood of patients with COVID-19. Moreover, high ubiquitination levels were associated with a favourable prognosis, low inflammatory response, and reduced mechanical ventilation and intensive care unit. Moreover, high ubiquitination promoted a beneficial immune response while inhibiting immune damage. Finally, prognostic stratification and biomarker screening based on ubiquitination traits played an important role in clinical management and drug development. CONCLUSION: Ubiquitination characteristics provides new ideas for clinical intervention and prognostic guidance for COVID-19 patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Ubiquitination/genetics , Ubiquitin , Proteasome Endopeptidase Complex
14.
J Cell Mol Med ; 26(21): 5506-5516, 2022 11.
Article in English | MEDLINE | ID: covidwho-2103158

ABSTRACT

Although the physiological function of receptor-interacting protein kinase (RIPK) 3 has emerged as a critical mediator of programmed necrosis/necroptosis, the intracellular role it plays as an attenuator in human lungs and human bronchial epithelia remains unclear. Here, we show that the expression of RIPK3 dramatically decreased in the inflamed tissues of human lungs, and moved from the nucleus to the cytoplasm. The overexpression of RIPK3 dramatically increased F-actin formation and decreased the expression of genes for pro-inflammatory cytokines (IL-6 and IL-1ß), but not siRNA-RIPK3. Interestingly, whereas RIPK3 was bound to histone 1b without LPS stimulation, the interaction between them was disrupted after 15 min of LPS treatment. Histone methylation could not maintain the binding of RIPK3 and activated movement towards the cytoplasm. In the cytoplasm, overexpressed RIPK3 continuously attenuated pro-inflammatory cytokine gene expression by inhibiting NF-κB activation, preventing the progression of inflammation during Pseudomonas aeruginosa infection. Our data indicated that RIPK3 is critical for the regulation of the LPS-induced inflammatory microenvironment. Therefore, we suggest that RIPK3 is a potential therapeutic candidate for bacterial infection-induced pulmonary inflammation.


Subject(s)
Lipopolysaccharides , Pseudomonas aeruginosa , Humans , Histones , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Necrosis , Inflammation/metabolism , Cytokines/metabolism
15.
Mol Cell Proteomics ; 21(12): 100425, 2022 Oct 12.
Article in English | MEDLINE | ID: covidwho-2069471

ABSTRACT

The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus 2019 disease, has led to an ongoing global pandemic since 2019. Mass spectrometry can be used to understand the molecular mechanisms of viral infection by SARS-CoV-2, for example, by determining virus-host protein-protein interactions through which SARS-CoV-2 hijacks its human hosts during infection, and to study the role of post-translational modifications. We have reanalyzed public affinity purification-mass spectrometry data using open modification searching to investigate the presence of post-translational modifications in the context of the SARS-CoV-2 virus-host protein-protein interaction network. Based on an over twofold increase in identified spectra, our detected protein interactions show a high overlap with independent mass spectrometry-based SARS-CoV-2 studies and virus-host interactions for alternative viruses, as well as previously unknown protein interactions. In addition, we identified several novel modification sites on SARS-CoV-2 proteins that we investigated in relation to their interactions with host proteins. A detailed analysis of relevant modifications, including phosphorylation, ubiquitination, and S-nitrosylation, provides important hypotheses about the functional role of these modifications during viral infection by SARS-CoV-2.

16.
Front Genet ; 13: 908826, 2022.
Article in English | MEDLINE | ID: covidwho-2043440

ABSTRACT

Background: The COVID-19 pandemic has currently developed into a worldwide threat to humankind. Importantly, patients with severe COVID-19 are believed to have a higher mortality risk than those with mild conditions. However, despite the urgent need to develop novel therapeutic strategies, the biological features and pathogenic mechanisms of severe COVID-19 are poorly understood. Methods: Here, peripheral blood mononuclear cells (PBMCs) from four patients with severe COVID-19, four patients with mild COVID-19, and four healthy controls were examined by RNA sequencing (RNA-Seq). We conducted gene expression analysis and Venn diagrams to detect specific differentially expressed genes (DEGs) in patients with severe disease compared with those with mild conditions. Gene Ontology (GO) enrichment analysis was performed to identify the significant biological processes, and protein-protein interaction networks were constructed to extract hub genes. These hub genes were then subjected to regulatory signatures and protein-chemical interaction analysis for certain regulatory checkpoints and identification of potent chemical agents. Finally, to demonstrate the cell type-specific expression of these genes, we performed single-cell RNA-Seq analyses using an online platform. Results: A total of 144 DEGs were specifically expressed in severe COVID-19, and GO enrichment analysis revealed a significant association of these specific DEGs with autophagy. Hub genes such as MVB12A, CHMP6, STAM, and VPS37B were then found to be most significantly involved in the biological processes of autophagy at the transcriptome level. In addition, six transcription factors, including SRF, YY1, CREB1, PPARG, NFIC, and GATA2, as well as miRNAs, namely, hsa-mir-1-3p, and potent chemical agents such as copper sulfate and cobalt chloride, may cooperate in regulating the autophagy hub genes. Furthermore, classical monocytes may play a central role in severe COVID-19. Conclusion: We suggest that autophagy plays a crucial role in severe COVID-19. This study might facilitate a more profound knowledge of the biological characteristics and progression of COVID-19 and the development of novel therapeutic approaches to achieve a breakthrough in the current COVID-19 pandemic.

17.
J Virol ; 96(17): e0077422, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-1992940

ABSTRACT

XIAP-associated factor 1 (XAF1) is an interferon (IFN)-stimulated gene (ISG) that enhances IFN-induced apoptosis. However, it is unexplored whether XAF1 is essential for the host fighting against invaded viruses. Here, we find that XAF1 is significantly upregulated in the host cells infected with emerging RNA viruses, including influenza, Zika virus (ZIKV), and SARS-CoV-2. IFN regulatory factor 1 (IRF1), a key transcription factor in immune cells, determines the induction of XAF1 during antiviral immunity. Ectopic expression of XAF1 protects host cells against various RNA viruses independent of apoptosis. Knockout of XAF1 attenuates host antiviral innate immunity in vitro and in vivo, which leads to more severe lung injuries and higher mortality in the influenza infection mouse model. XAF1 stabilizes IRF1 protein by antagonizing the CHIP-mediated degradation of IRF1, thus inducing more antiviral IRF1 target genes, including DDX58, DDX60, MX1, and OAS2. Our study has described a protective role of XAF1 in the host antiviral innate immunity against RNA viruses. We have also elucidated the molecular mechanism that IRF1 and XAF1 form a positive feedback loop to induce rapid and robust antiviral immunity. IMPORTANCE Rapid and robust induction of antiviral genes is essential for the host to clear the invaded viruses. In addition to the IRF3/7-IFN-I-STAT1 signaling axis, the XAF1-IRF1 positive feedback loop synergistically or independently drives the transcription of antiviral genes. Moreover, XAF1 is a sensitive and reliable gene that positively correlates with the viral infection, suggesting that XAF1 is a potential diagnostic marker for viral infectious diseases. In addition to the antitumor role, our study has shown that XAF1 is essential for antiviral immunity. XAF1 is not only a proapoptotic ISG, but it also stabilizes the master transcription factor IRF1 to induce antiviral genes. IRF1 directly binds to the IRF-Es of its target gene promoters and drives their transcriptions, which suggests a unique role of the XAF1-IRF1 loop in antiviral innate immunity, particularly in the host defect of IFN-I signaling such as invertebrates.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , Interferon Regulatory Factor-1 , RNA Virus Infections , RNA Viruses , Adaptor Proteins, Signal Transducing/immunology , Animals , Apoptosis Regulatory Proteins/immunology , Humans , Immunity, Innate , Interferon Regulatory Factor-1/immunology , Mice , Mice, Knockout , RNA Virus Infections/immunology , Virus Replication
18.
Front Oncol ; 12: 925041, 2022.
Article in English | MEDLINE | ID: covidwho-1979053

ABSTRACT

SCFFBXW7 E3 ubiquitin ligase complex is a crucial enzyme of the ubiquitin proteasome system that participates in variant activities of cell process, and its component FBXW7 (F-box and WD repeat domain-containing 7) is responsible for recognizing and binding to substrates. The expression of FBXW7 is controlled by multiple pathways at different levels. FBXW7 facilitates the maturity and function maintenance of immune cells via functioning as a mediator of ubiquitination-dependent degradation of substrate proteins. FBXW7 deficiency or mutation results in the growth disturbance and dysfunction of immune cell, leads to the resistance against immunotherapy, and participates in multiple illnesses. It is likely that FBXW7 coordinating with its regulators and substrates could offer potential targets to improve the sensitivity and effects of immunotherapy. Here, we review the mechanisms of the regulation on FBXW7 and its tumor suppression role in immune filed among various diseases (mostly cancers) to explore novel immune targets and treatments.

19.
mSystems ; 7(3): e0005822, 2022 Jun 28.
Article in English | MEDLINE | ID: covidwho-1854245

ABSTRACT

The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has become a severe global public health crisis. Therefore, understanding the molecular details of SARS-CoV-2 will be critical for fighting the virus's spread and preventing future pandemics. In this study, we globally profiled the stability of SARS-CoV-2-encoded proteins, studied their degradation pathways, and determined their correlation with the antibody responses in patient plasma. We identified 18 proteins with unstable half-lives and 6 relatively stable proteins with longer half-lives. The labile SARS-CoV-2 proteins were degraded mainly by the ubiquitin-proteasome pathway. We also observed a significant correlation between antibody levels and protein half-lives, which indicated that a stable antigen of SARS-CoV-2 could be more effective for eliciting antibody responses. In addition, levels of antiviral antibodies targeting NSP10 were found to be negatively correlated with systemic levels of interleukin 6 (IL-6) in patients. These findings may facilitate the development of novel therapeutic or diagnostic approaches. IMPORTANCE SARS-CoV-2, the etiological cause of COVID-19, carries 29 genes in its genome. However, our knowledge of the viral proteins in biological and biochemical aspects is limited. In this study, we globally profiled the stability of the viral proteins in living lung epithelial cells. Importantly, the labile SARS-CoV-2-encoded proteins were mainly degraded through the ubiquitin-proteasome pathway. Stable proteins, including spike and nucleocapsid, of SARS-CoV-2 were more effective in eliciting antibody production. The levels of antiviral antibodies targeting NSP10 were negatively correlated with systemic levels of IL-6 in COVID-19 patients.

20.
Cells ; 11(9)2022 04 30.
Article in English | MEDLINE | ID: covidwho-1822414

ABSTRACT

The p53-dependent ubiquitin ligase Pirh2 regulates a number of proteins involved in different cancer-associated processes. Targeting the p53 family proteins, Chk2, p27Kip1, Twist1 and others, Pirh2 participates in such cellular processes as proliferation, cell cycle regulation, apoptosis and cellular migration. Thus, it is not surprising that Pirh2 takes part in the initiation and progression of different diseases and pathologies including but not limited to cancer. In this review, we aimed to summarize the available data on Pirh2 regulation, its protein targets and its role in various diseases and pathological processes, thus making the Pirh2 protein a promising therapeutic target.


Subject(s)
Tumor Suppressor Protein p53 , Ubiquitin-Protein Ligases , Cell Cycle Checkpoints , Tumor Suppressor Protein p53/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL